Neural crest induction in Xenopus: evidence for a two-signal model.

نویسندگان

  • C LaBonne
  • M Bronner-Fraser
چکیده

We have investigated the molecular interactions underlying neural crest formation in Xenopus. Using chordin overexpression to antagonize endogenous BMP signaling in whole embryos and explants, we demonstrate that such inhibition alone is insufficient to account for neural crest induction in vivo. We find, however, that chordin-induced neural plate tissue can be induced to adopt neural crest fates by members of the FGF and Wnt families, growth factors that have previously been shown to posteriorize induced neural tissue. Overexpression of a dominant negative XWnt-8 inhibits the expression of neural crest markers, demonstrating the necessity for a Wnt signal during neural crest induction in vivo. The requirement for Wnt signaling during neural crest induction is shown to be direct, whereas FGF-mediated neural crest induction may be mediated by Wnt signals. Overexpression of the zinc finger transcription factor Slug, one of the earliest markers of neural crest formation, is insufficient for neural crest induction. Slug-expressing ectoderm will generate neural crest in the presence of Wnt or FGF-like signals, however, bypassing the need for BMP inhibition in this process. A two-step model for neural crest induction is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origins of the neural crest. Part I: embryonic induction

Neural crest cells form at the border between the neural plate and the epidermis. The tissue interactions that underlie neural crest cell induction have been investigated primarily by heterotopic grafting experiments in vivo and by conjugating different tissues in vitro. Three models have been proposed to explain the induction of neural crest cells at the neural plate border, i.e. (1) the influ...

متن کامل

Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.

A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the p...

متن کامل

A novel member of the Xenopus Zic family, Zic5, mediates neural crest development

We characterized Xenopus Zic5 which belongs to a novel class of the Zic family. Zic5 is more specifically expressed in the prospective neural crest than other Zic genes. Overexpression of Zic5 in embryos led to ectopic expression of the early neural crest markers, Xsna and Xslu, with the loss of epidermal marker expression. In Zic5-overexpressing animal cap explants, there was marked induction ...

متن کامل

Requirement of FoxD3-class signaling for neural crest determination in Xenopus.

Fox factors (winged-helix transcription factors) play important roles in early embryonic patterning. We show here that FoxD3 (Forkhead 6) regulates neural crest determination in Xenopus embryos. Expression of FoxD3 in the presumptive neural crest region starts at the late gastrula stage in a manner similar to that of Slug, and overlaps with that of Zic-r1. When overexpressed in the embryo and i...

متن کامل

Snail2 controls mesodermal BMP/Wnt induction of neural crest.

The neural crest is an induced tissue that is unique to vertebrates. In the clawed frog Xenopus laevis, neural crest induction depends on signals secreted from the prospective dorsolateral mesodermal zone during gastrulation. The transcription factors Snail2 (Slug), Snail1 and Twist1 are expressed in this region. It is known that Snail2 and Twist1 are required for both mesoderm formation and ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 13  شماره 

صفحات  -

تاریخ انتشار 1998